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Electronic waveguides in graphene formed by counterpropagating snake states in suitable inhomogeneous
magnetic fields are shown to constitute a realization of a Tomonaga-Luttinger liquid. Due to the spatial
separation of the right- and left-moving snake states, this non-Fermi liquid state induced by electron-electron
interactions is essentially unaffected by disorder. We calculate the interaction parameters accounting for the
absence of Galilei invariance in this system, and thereby demonstrate that non-Fermi liquid effects are signifi-
cant and tunable in realistic geometries.
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I. INTRODUCTION

One-dimensional �1D� electron systems can nowadays be
studied in different material systems, e.g., by depositing
negatively charged metallic gate electrodes on top of a two-
dimensional electron gas �2DEG� in semiconducting hetero-
structures, thereby depleting the 2DEG to form the desired
structure,1 or in single-wall nanotubes �SWNTs�.2 Such 1D
quantum wires have been argued to realize the non-Fermi
liquid behavior of a Tomonaga-Luttinger liquid �TLL�,3–7

arising as a consequence of electron-electron �e-e� interac-
tions. Experimental signatures of TLL behavior include non-
universal power laws in certain transport properties related to
the tunneling density of states, but many other observables
also may reflect the non-Fermi liquid properties of a TLL.
Experimental observations in semiconductor quantum wires8

were explained by TLL parameters of the order of gc�0.4 to
0.5, while the corresponding parameter in SWNTs9 was re-
ported as gc+�0.16 to 0.3. Both values are significantly
smaller than the respective noninteracting value, g=1.

Very recently, graphene monolayers10,11 have become
available as a new realization of a 2DEG, albeit with prop-
erties strikingly different from their semiconducting counter-
parts. The kinetic energy of graphene close to one of the
Dirac �K ,K�� points is described by a two-component chiral
Dirac-Weyl Hamiltonian12,13

H = vF� · �p − A� �1�

of massless relativistic particles moving at graphene’s Fermi
velocity vF�106 m /sec, instead of the usual Schrödinger
Hamiltonian p2 /2m� �with effective mass m��. In Eq. �1�, �
denotes the vector of Pauli matrices in sublattice �“pseu-
dospin”� space, while the physical spin, as well as the valley
�K−K�� degrees of freedom, are left implicit. Furthermore,
we have allowed for a static inhomogeneous orbital magnetic
field perpendicular to the graphene plane �the field compo-
nents in the plane do not affect orbital motion�, B
=B�x ,y�êz, which is incorporated by minimal �Peierls� cou-
pling in terms of the corresponding vector potential A�x ,y�.
This gives rise to interesting magnetic barrier and magnetic
confinement effects.14–17

It is well known, both theoretically18 and
experimentally,19 that a magnetic-field gradient can give rise
to unidirectional 1D snake states. Such orbits were recently
studied theoretically in graphene20–22 and in SWNTs.23 Snake
states carry current along the lines where the magnetic field
changes sign, and hence is zero. On a classical level, they
can be understood as half orbits of different circulation sense
�for B�0 and B�0�, patched together to form a unidirec-
tionally propagating orbit.24 Pairs of snake states running
antiparallel to each other are referred to as double-snake
states.25 In many regards, double-snake states correspond to
the standard left and right movers in 1D quantum wires. For
example, they should exhibit quantized conductance in mul-
tiples of 4e2 /h �including spin and valley degeneracies�.
Since the snake states are spatially separated, this quantiza-
tion should be robust: shallow impurities are not expected to
cause scattering between snake modes of opposite direction-
ality.

In this work, we address consequences of the long-ranged
but ultimately screened e-e interactions within and between
the counterpropagating snake orbits in graphene magnetic
waveguides. For a wide class of experimentally relevant field
profiles, we show that a TLL state with broken Galilei invari-
ance and extremely weak disorder sensitivity can be realized.
On a general level, the importance of e-e interactions for the
correct interpretation of experimental data in graphene has
recently been stressed.26 Theories describing e-e interaction
effects on the transport properties of electrons in graphene
have been proposed for strong homogeneous magnetic
fields27 and for zero magnetic field.28 A recent debate has
discussed the question whether interacting electrons in un-
doped graphene form a Fermi liquid or not.29,30 Interactions
are also predicted to yield a TLL state in special graphene
nanoribbons with armchair edges.31

For the related case of interacting metallic SWNTs, the
effective low-energy theory predicts a four-channel TLL
state,32,33 where the spin and valley degrees of freedom give
rise to the four channels. There is one charged �c+� channel,
where the long-ranged e-e interactions play a crucial role,
while the three neutral channels are basically insensitive to
interactions. We will see that the situation in a graphene
magnetic waveguide is similar, and the parameter g dis-

PHYSICAL REVIEW B 78, 165402 �2008�

1098-0121/2008/78�16�/165402�10� ©2008 The American Physical Society165402-1

http://dx.doi.org/10.1103/PhysRevB.78.165402


cussed below plays the role of the SWNT parameter gc+.
Albeit the interaction does not spoil conductance quantiza-
tion in dc transport for adiabatically connected reservoirs,34

it nevertheless destroys the Fermi-liquid character of the sys-
tem. In fact, it leads to nonuniversal power laws in the tun-
neling density of states, and to peculiar ac transport and shot
noise35 properties at low temperatures. These phenomena are
appropriately described by TLL theory.3–7 The respective
power-law exponents can be directly inferred from Refs. 32
and 33 by simply replacing gc+ with our estimate for g �see
Eq. �32� below�.

After introducing the model and the magnetic-field pro-
files in Sec. II A, the band structure is studied in Gaussian
approximation in what follows in Sec. II B. The analytical
band structure results are validated by comparing to exact
diagonalization results. The numerical diagonalization is
briefly discussed in Appendix. The linearized band structure
for a double-snake state waveguide leading to TLL behavior
is then described in Sec. III A. The physics of a TLL is
governed by a dimensionless interaction parameter g, for
which general expressions in terms of certain velocities are
derived in Sec. III B. These velocities are obtained from per-
turbative expressions for the ground-state energy, and yield
the analytical results for g given in Sec. IV. We conclude in
Sec. V. In Secs. III and IV, to be specific, we focus on
electron-like excitations by assuming a positive value of the
Fermi energy �F. Below, we often take units such that �
=vF=1.

II. MODEL AND BANDSTRUCTURE

A. Model

In this paper, we consider magnetic fields B=B�x�, guid-
ing particles homogeneously along the y direction. This im-
plies that the wave number k along this direction is con-
served. Two-component eigenstates of the Dirac-Weyl
Hamiltonian �Eq. �1�� can then be written as ��x ,y�
�eiky��k�x� ,�k�x��T. The vector potential can be chosen as
A=A�x�êy, with the spinor components obeying

� 0 − i�x − ik + iA�x�
− i�x + ik − iA�x� 0

���k�x�
�k�x�

� = �k��k�x�
�k�x�

� .

�2�

Complex phases may be chosen such that �k is real and �k
purely imaginary. After squaring, Eq. �2� can be cast into a
Schrödinger-type form for the upper Dirac component �k,

�− �x
2 + �k − A�x��2 − B�x� − �k

2��k�x� = 0. �3�

A similar equation holds for the lower component �k�x�, with
the sign of the “pseudo-Zeeman” term �B reversed. Unless
�k=0, Eq. �2� implies

	 dx
�k�x�
2 =	 dx
�k�x�
2 = 1/2. �4�

Note that in path-integral approaches to relativistic quantum
mechanics, in order to guarantee convergence of the Wiener
measure,36 often the square of the Dirac Hamiltonian �Eq.

�1�� is considered. Path-integral representations, on the other
hand, allow for systematic approximations, and therefore,
Eq. �3� is a useful starting point for the Gaussian approxima-
tion, cf. Sec. II B, where the boundedness of the differential
operator appearing in Eq. �3� is exploited for either sign of
B�x�, in the spirit of a saddle-point approximation. Our
method differs from Wentzel-Kramers-Brillouin �WKB�-type
approaches recently put forward to describe the electronic
properties of graphene.22,37 We note in passing that massive
Schrödinger particles obey a related equation as Eq. �3�, with
quadratic momenta multiplied by 1 / �2m��, in the same
magnetic-field profile; only the pseudo-Zeeman term must be
removed, and of course, the energy �k

2 must be replaced by
�k, i.e., hole and zero-energy states both disappear. As a con-
sequence, most of our conclusions also apply �at least quali-
tatively� to magnetic waveguides based on traditional
Schrödinger fermions.

We consider the class of magnetic-field profiles given by

B�x� = 	
B��
Bx�	−1 − B0. �5�

In our gauge, we thus have

A�x� = 

B

	+1
2 x	 − B0x . �6�

The index 	 can describe rather different situations, but we
are only interested in 	 being a natural number. For instance,
for 	=1, we recover the homogeneous magnetic-field case,
giving rise to the standard relativistic Landau levels. For 	
=2, profile �5� instead describes a setup with one snake state
propagating along the y direction, while 	=3 �or, more gen-
erally, all odd 	�1� can give rise to a double-snake state
geometry, where the background magnetic field −B0 allows
for lines with B=0, and 
B sets the inhomogeneity scale.
Equation �3� manifests the electron-hole symmetry �k↔−�k
of Eq. �2�, with a zero-energy eigenstate ��k=0 for all k�
appearing whenever 	 is odd, but not for even 	.38

Equation �5� qualitatively describes many situations of
experimental relevance, where typically smooth magnetic-
field profiles are present. Of course, far away from the wave-
guide defined by the snake states, the actual profile is differ-
ent in practice, but this does not significantly affect the TLL
discussed below. In fact, we have also analyzed step-like
field profiles, such as the ones described in Ref. 21, with
very similar results and conclusions. For 	=3, counterpropa-
gating snake states are centered around x= �d with B��d�
=0, leading to

d =
�B0

�3
B

, �7�

such that 2d is the parallel distance between counterpropa-
gating snake states. In this configuration, a TLL can be real-
ized, and most of our analysis will deal with this case.

Below, we will ignore the Zeeman splitting due to the
interaction of the true electronic spin with the magnetic field
creating the waveguide. A simple estimate for a homoge-
neous magnetic field already shows that this approximation
is justified in graphene. The physical Zeeman splitting �Z
=ge
BB amounts to 0.116 meV for B=1 Tesla, taking ge
=2 and the free electron mass me going into Bohr’s magne-
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ton 
B. This value can be compared to the orbital splitting
�orb between subsequent levels—in the language of Eq. �3�,
this corresponds to a “pseudo-Zeeman splitting”—with the
result

�Z

�orb
�

�F

mevF
2 , �8�

predicting that even for �F=1 eV, the Zeeman splitting is 50
times smaller than the orbital splitting. In view of the small-
ness of ratio �8�, we will neglect Zeeman terms in what fol-
lows. In any case, their effects on the low-energy theory of
interacting electrons in graphene waveguides are standard
and could be included along the lines of Refs. 4–7.

B. Gaussian approximation

Next we describe our analytical approach to the band
structure and the eigenfunctions. They allow for closed form
expressions of the TLL parameter g in Sec. IV. At large 
k
,
when anharmonic contributions of the effective potential ap-
pearing in Eq. �3� are suppressed, the Gaussian approxima-
tion becomes exact. To confirm the accuracy of the analytical
results, we have carried out numerical diagonalizations of the
matrix representing the Schrödinger-type Hamiltonian �Eq.
�3�� in a complete basis set. This is briefly described in Ap-
pendix.

It is instructive to first study one of the two counterpropa-
gating snake modes individually. We therefore set B0=0 and
	=2 in Eq. �5�, i.e., B���=2
B� with 
B�0, where we in-
troduce dimensionless lengths, �=�
Bx, and momenta, �
=k /�
B. The Schrödinger version of this model has been
studied previously.18 The single-snake state is now centered
near x=0 with �positively or negatively charged� particles
running in the negative y direction. The spectrum in this case
is not symmetric, �k��−k. We then need to discuss the ef-
fective potential appearing in Eq. �3�,

V	=2��,�� = ��2 − ��2 − 2�z� ,

which depends on the sublattice component �z= �1 of the
wave function. Obviously, for any �, V	=2 is invariant under
the combined operation �z→−�z and �→−� so that 
�k���

= 
�k�−��
 in Eq. �2�. For �→−�, the minima of V	=2 ap-
proach �2 at �=0 so that 
�k���
= 
�k���
�e−�−�/2�2

and
�k→−�→−k. This indicates that the velocity reaches, up to
subleading corrections, the negative of the Fermi velocity.
This is precisely the snake state with both components of the
Dirac spinor localized near x=0. In the other limit, �→ +�,
the minima of V	=2 approach −2�� at �=�z

��. In that case,
the two sublattice components 
�k���
= 
�k�−��
�e−���� − ���2

are spatially separated from one another and from the snake
mode, provided the distance exceeds the widths of these dis-
tributions. This result suggests an interesting application as a
“sublattice filter,” where the magnetic field leads to a spatial
separation of particles located on different sublattices. How-
ever, for the other K point, the sublattice states are ex-
changed, and in order to see such an effect, one would need
to have a valley-polarized system �i.e., a single K point�. The
corresponding energy in Gaussian approximation is �k→+�

→0. This result cannot be recovered using WKB-type
approaches,22,37 which are more suited to describe higher ex-
cited states. Interestingly, the positions �= ��� of these
states remain protected against the pseudo-Zeeman field “in-
clination” from Eq. �3�, contrary to naive expectation and in
contrast to the nonzero shift found in any of the excited
states. Finally, also excited energies can be estimated in this
way. For example, the first excited level is expected at �k
=2
B

3/8k1/4.
In effect, we then arrive at a picture where snake �near

x=0� and “bulk” modes �near x= �
B
−3/4�k� will develop.

We here distinguish “snake” and “bulk” modes by their re-
spective group velocities. Figure 1 clearly demonstrates how
the eigenstates evolve from snake states �at k→−� with
�k�k=−1� into bulk modes at k→ +�. In Fig. 2 the corre-
sponding metamorphosis is displayed of a �single� snake
state at sufficiently negative k centered around �=0 �see Fig.
2�a��, into a bulk state, residing increasingly far away from
�=0 with increasing k�0. For �=8, cf. Fig. 2�b�, the state is
located near �=2.83�z as expected.

Let us now turn to the magnetic-field profile with 	=3 in
Eq. �5�, which should exhibit double-snake states of opposite
directionality due to the existence of two zeros of B�x�. To
some extent, we now have two copies of the above single-
snake state situation at a distance 2d �cf. Equation �7��. Since
B�x�=B�−x�, the dispersion relation is now symmetric, �k
=�−k. At k→ ��, we thus anticipate the coexistence of
snake and bulk modes. In addition, an exact zero-energy
eigenstate, �k=0, must now occur as a consequence of the
index theorem.38 The potential entering Eq. �3� is

V	=3��,�� = ��3 − b0� − ��2 − �z�3�2 − b0� , �9�

where b0=B0 /
B. This potential is invariant under a simul-
taneous sign change of � and �, transforming left-movers

-2 0 2 4 6 8
k

0

1

2

3

4

5

6

ε k

FIG. 1. �Color online� Electron-like energy eigenvalues �k ver-
sus momentum k �both in units of �
B�, as obtained by numerical
diagonalization of Eq. �3� for a magnetic-field profile with 	=2 and
B0=0 in Eq. �5�. The solid �black� curve denotes the lowest
positive-energy eigenstate, and the dashed �red� and dash-dotted
�blue� curves give the next two pairs of excited states. The dotted
curve indicates the limiting snake-state dispersion �k=−k for k�0,
and the result in Gaussian approximation for the first excited energy
band, �k=2
B

3/8k1/4, for k�0. Note that for the lowest state, �k→+�

approaches zero energy �Refs. 20 and 21�, in agreement with the
Gaussian approximation.
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into right-movers and vice versa. Similar as for 	=2, we can
obtain energies in Gaussian approximation. The lowest en-
ergy, only for �z= +1, equals zero at large 
k
. This describes
the zero-energy state, present for any k at odd 	 �cf. Sec. II A
and Appendix�. The first excited �positive� energy is approxi-
mated as

�k = �6

Bk
1/3 + B0/��6

Bk
1/3� . �10�

This result is included to the numerically obtained spectra
�see Fig. 3�. The corresponding eigenstates are localized
around �= �
�
1/3+b0 /3
�
1/3+�z /3
�
�sgn���, i.e., increas-
ingly deep in the system’s bulk with increasing 
k
. Figure 3
shows a typical spectrum obtained from numerical diagonal-
ization. Depending on the slopes �k�k at large 
k
, one type of
band goes like �k� �vF
k
, corresponding to the counter-
propagating snake states centered around x= �d �see Eq.
�7��. Snake states move with the Fermi velocity of graphene
at large 
k
, irrespective of the magnetic-field profile.20,21,39

The other bands in Fig. 3 exhibit smaller slopes at large 
k
.
The corresponding states are localized increasingly further
away from the center of the wire at increasing 
k
, and we
thus call them again “bulk” modes. Due to their different
slopes, bands of different types should cross, and Fig. 3 in-
deed reveals avoided intersections. Such avoided level cross-
ings can be attributed to some residual hybridization between

snake and bulk modes. They become successively less im-
portant as the bulk state’s center moves away from the snake
state with increasing 
k
.

Figure 4 validates the behavior of the two types of eigen-
states for the double-snake 	=3 situation with �=−6. In
view of Fig. 3, this value of 
�
 is just beyond one of the
�narrower� avoided crossings so that the lowest positive-
energy state, exhibiting a moderate slope, must be identified
as a bulk state. This is indeed confirmed in Fig. 4, where the
densities of both components of this state are seen. Gaussian
approximation predicts its center to be at �=−2.1+0.06�z,
which is nicely confirmed by comparing to exact diagonal-
ization results. The first excited state at �=−6 has �k�k�
−1, and therefore is classified as snake state. Indeed, as seen
in Fig. 4, both pseudospin components of this state reside
near �=0.7, where B���=0. Note that, according to Eq. �22�,
densities for odd 	 are mirror symmetric under simultaneous
sign reversal of � and � so that the �= +6 state is centered at
�=−0.7. Finally, we note that all densities in Figs. 2 and 4
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(ξ
)|2

|φ(ξ)|2
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ξ

0

0.5

1

1.5
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(ξ

)|2 ,|χ
(ξ
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|φ(ξ)|2

|χ(ξ)|2

(a)

(b)

FIG. 2. �Color online� Numerical diagonalization results for the
probability densities of the spinor components 
�����
2 �black solid
curve� and 
�����
2 �red dashed curve� of the lowest eigenstate to
positive energy of Eq. �2� with 	=2 and B0=0. �a� is for momentum
�=−2, and �b� for �=8.
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k
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ε k

FIG. 3. �Color online� Same as Fig. 1 but for 	=3 and B0

=1.526
B. Full curves �in different colors� give the numerical di-
agonalization results for the eigenenergies. When the Fermi level
intersects only the lowest �black� curve, one has precisely one
�spin- and valley-degenerate� left- and right-moving state in the
waveguide. This leads to a TLL state. The dotted curve denotes
�k= 
k
, and the dashed curve gives the estimate �10� for the lowest
dispersing energy band in the Gaussian approximation.
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1
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FIG. 4. �Color online� Same as Fig. 2 but for a magnetic field
�5� with 	=3 and B0=1.525
B. Shown are the two lowest positive-
energy eigenstates with �=−6.
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are well approximated by superpositions of suitable Gauss-
ians, in accordance with our Gaussian description.

III. INTERACTION EFFECTS

A. Waveguide model

When considering a 1D graphene magnetic waveguide
with counterpropagating snake states at low-energy scales,
see Sec. II B, the question arises whether interacting Dirac
fermions in such a waveguide belong to the TLL universality
class.3–7 As always happens in 1D, Landau quasiparticles
will be destroyed by any nonzero e-e interaction strength,40

but whether the resulting non-Fermi liquid is a TLL remains
to be shown. Indeed, this expectation is corroborated by the
analogous situation in a quantum Hall bar,41,42 where, as a
consequence of the long-ranged Coulomb interaction be-
tween different edge states, a TLL with spatially separated
left- and right-moving edge states emerges.43

We start with a discussion of the relevant single-particle
band structure. For a magnetic waveguide with 	=3 and
B0�0 in Eq. �5�, the lowest positive-energy subband �k

�1�

=�−k
�1� has left- and right-going snake states near x= �d �see

Eq. �7�� that essentially move at velocity �vF. We assume
that the Fermi level intersects these states at �kF, and that all
other states are energetically sufficiently far away. This band
structure was discussed in detail in Sec. II B �see Fig. 3�.
Using second quantization, the kinetic energy is then de-
scribed by

H0 = 

k

�k
�1�ck

†ck, �11�

where ck
† �ck� creates �annihilates� a Dirac quasiparticle with

momentum k, and spin and valley indices are kept implicit.
The electron field operator for waveguide length L along the
y direction is thus written as

��x,y� =
1
�L



k

eiky��k�x�
�k�x�

�ck. �12�

The crucial parameters characterizing the TLL are certain
velocities.5 In the noninteracting case, Dirac particles move
at velocity21

vF��y�k = 2vF Im	 dx�k
��x��k�x� = �k�k � vk,

given by the slope of the energy dispersion, just as for
Schrödinger particles. Assuming that �F is sufficiently far
away from both the band bottom of �k

�1� and from the next-
higher energy band, we linearize �k

�1� about the two Fermi
points k= �kF, yielding velocities �vkF

. This also separates
right �k�0� from left �k�0� movers in Eq. �11�, and implic-
itly defines the standard bandwidth cutoff around the Fermi
level used in TLL theory.

B. Tomonaga-Luttinger liquid

Next we incorporate e-e interactions within an effective
low-energy theory. We consider the pair interaction
potential44

W�x1,x2� =
e2

�0
� 1


x1 − x2

−

1
��x1 − x2�2 + 4D2� �13�

between electrons at coordinates x1= �x1 ,y1� and x2
= �x2 ,y2�. This form specifically accounts for screening by
metal gates positioned at some distance D from the wave-
guide. Its strength is governed by the dimensionless “fine
structure constant” �=e2 / ��0�vF�, which basically depends
only on the dielectric constant �0. For typical substrate ma-
terials, one has values �0�1.4 to 4.7, resulting in ��0.6 to
2.33,45,46 For graphene, both the kinetic as well as the Cou-
lomb energy scale ���n for particle density n� in the same
way.46 The resulting weak tunability of the e-e interaction
strength in graphene is in stark contrast to the situation in
semiconductors, where n allows to alter the relative strength
of Coulomb interactions over orders of magnitude.

When constructing a low-energy theory for interacting
Dirac fermions in the double-snake state waveguide of Sec.
III A, the resulting 1D e-e interaction processes can be clas-
sified as forward-scattering and backscattering processes.3–7

The spatial separation of the unidirectional snake states here
implies a strong suppression of e-e backscattering processes,
where the relevant couplings are exponentially small in the
parameter kFd�1. In the following, we discuss the regime

kFD � kFd � 1, �14�

where backscattering processes are negligible. This situation
is reminiscent of the SWNT case,33 where one, however,
finds only an algebraic suppression of the backscattering
couplings with increasing SWNT radius. We then only need
to include forward-scattering processes �see also Ref. 33�,
and arrive at a four-channel TLL model. The three neutral
sectors involve spin and valley degrees of freedom and are
decoupled from each other and from the charge sector �spin-
charge separation�. For not too strong interactions, as ex-
pected in graphene, the neutral sectors will remain basically
unaffected by interactions, with their velocity parameters �al-
most� equal to vkF

�see also Ref. 47�. This implies that the
TLL parameters for the three neutral sectors are just given by
the noninteracting value �g=1�. In the following, we then
focus on the charge �c+� sector only.

The resulting TLL is most conveniently described by Abe-
lian bosonization.4–7,33 For the c+ sector, the resulting
Hamiltonian is

Hc+ =
1

2
	 dy�vJ��y��y��2 + vN��y��y��2� , �15�

with bosonic fields subject to the algebra ���y� ,�y��y��
= i��y−y��. Equation �15� reflects the fact that density waves
�in contrast to quasiparticles� are undamped in a TLL.40 With
Eq. �15� and the usual bosonized form of the Fermi
operators,6 almost any observable of physical interest can be
determined exactly at low energies and long wavelengths,
where the TLL model applies. In general, vJ�vN can deviate
from vkF

as a result of the repulsive e-e interactions. Interac-
tion physics is thus encoded in vJ and vN. These velocities
determine the dimensionless TLL interaction parameter
g�gc+ and the plasmon velocity v according to4
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g = �vJ/vN, v = �vJvN. �16�

In principle, both parameters are experimentally accessible,
e.g., through the tunneling density of states,9 momentum-
resolved tunneling,8 or via plasmon propagation times.48

The velocities vJ and vN can be extracted in an elegant
and exact manner from thermodynamic relations,5,49

vN =
�

4L

�2E0

�k0
2 , vJ =

�

4L

�2E0

��2 , �17�

provided the fully interacting ground-state energy density
E0 /L for fixed left �−kF

�−�� and right �kF
�+�� Fermi momenta is

known, where �= �kF
�+�−kF

�−�� /2 and k0= �kF
�+�+kF

�−�� /2. The
derivatives in Eq. �17� are evaluated at �=0 and k0=kF, and
the energy E0 includes the spin and valley degrees of free-
dom. Clearly, vN is proportional to the compressibility, and
when Galilei invariance is realized, vJ=vkF

is unchanged by
interactions. However, as we shall see below, this symmetry
is not obeyed here due to the periodic superstructure imposed
by the snake orbit.

IV. TLL PARAMETER

Unfortunately, exact results for E0 are known only for a
limited number of integrable models, such as the Hubbard
model50 or the Sutherland model.51 Even then, one still has
to numerically solve coupled pairs of integral equations to
access E0, and hence the velocities vJ,N in Eq. �17�. In actual
calculations of vJ and vN for nonintegrable models �which is
the case here�, one has to resort to approximations.44,52

A. Perturbation theory

We now use perturbation theory to obtain E0, and thus
velocities �17�, for relatively weak interactions. This ap-
proximation is almost exclusively used in the literature in
order to obtain estimates for the TLL parameters of generic
interacting one-dimensional �1D� fermion systems. In that
case, the ground-state energy can be split into three terms,

E0 = Ekin + EHartree − EFock, �18�

from which several contributions to the susceptibilities �Eq.
�17�� follow. Accounting for spin and valley degeneracy, we
have

�2Ekin

�k0
2 =

�2Ekin

��2 =
2L

�
��k�kF

�1� − �k�−kF

�1� � =
4L

�
vkF

, �19�

as expected for noninteracting quasiparticles with velocities
�vkF

.
From the Hartree interaction term, we then obtain

�2EHartree

�k0
2 =

L

�2 ���kF,kF� + ��kF,− kF� + R� , �20�

where, including again both spin and valley components, we
define

��k,k�� = ��k�,k� = 8	 dx	 dx�nk�x�nk��x��

� � ln�1 + �2D/�x − x���2, �21�

with the particle density for wave vector k at location x,

nk�x� = 
�k�x�
2 + 
�k�x�
2 = n−k�− x� . �22�

Note that �dxnk�x�=1 �see Eq. �4��. Furthermore, we have
introduced the quantity

R = 	
−kF

kF

dk�kF
���k,kF� + ��k,− kF��

= 2	
0

kF

dk�kF
���k,kF� + ��k,− kF�� . �23�

The second equalities in Eqs. �22� and �23� are valid for all
odd 	�1. In Eq. �21�, we have used that only long wave-
lengths q→0 are important in EHartree. To see this, consider
the one-sided Fourier transform of Eq. �13�,

W�q,x� = �	 dyeiqy� 1
�x2 + y2

−
1

�x2 + y2 + 4D2�
= ��K0�
qx
� − K0�
q
�4D2 + x2�� , �24�

implying that W�q→0,x��� ln�1+ �2D /x�2. With these
definitions, we obtain in a similar manner

�2EHartree

��2 =
L

�2 ���kF,kF� − ��kF,− kF� + R� . �25�

In view of Eqs. �16�–�25�, only the magnitude of ��kF ,
−kF� yields a nontrivial contribution to g at this level of
approximation. Within the g-ology terminology,3 we may
identify this term with g2, measuring the strength of forward
scattering between particles of different directionality
�henceforth referred to as chirality�. On the other hand, scat-
tering between equal-chirality particles is described by g4,
identified here as ��kF ,kF�. However, according to Eqs. �20�
and �25�, an additional term R is present, which effectively
modifies g4. In 1D quantum wires with continuous �Galile-
ian� translational invariance, both nk�x� and ��k ,k�� are in-
dependent of k ,k�, and hence R=0 and ��

2EHartree=0. In that
case, the Tomonaga-Luttinger liquid �TLL� parameter g de-
pends only on the zero-momentum Fourier component of the
interaction, W�q�0��� ln�D /d�, where d is of the order of
the wire width.

Similar �though slightly more involved� expressions can
be found for the Fock contributions to Eq. �17�, which are of
the order W�q�2kF�. Using Eq. �14�, this amplitude can be
estimated as

W�2kF� � �� �

8kFd
e−4kFd,

which is parametrically smaller than the Hartree amplitude.
Similar to backscattering contributions, Fock contributions
can thus safely be neglected against the Hartree terms for
parameter regime �14�.

HÄUSLER et al. PHYSICAL REVIEW B 78, 165402 �2008�

165402-6



B. TLL parameter estimate

In order to estimate the magnitude of the above terms, in
particular of ��kF ,−kF�, it is necessary to have some handle
on the unperturbed wave functions �k�x� and �k�x�, together
with the resulting densities nk�x�. We approximate their den-
sity profiles as

n���� �
�12b0�2�1/8

��
e−�12b0�2�1/4�� + sgn����
Bd�2

. �26�

Note that the true densities describing snake orbits �see Fig.
4� are somewhat more complicated, with a double-peak
shape. However, the simplified single-Gaussian form in Eq.
�26� captures the essential physics and allows for analytical
progress.

Given Eq. �26�, introducing the lengthscale

� = �3

4
B0
B

2kF
2�−1/8

, �27�

and using Eq. �21�, we are now in a position to estimate

��kF,− kF� � 8� ln�D/d� ,

��kF,kF� � 8� ln�eC/2D/�� , �28�

assuming D�d�� �see Eq. �14��. Here C=0.577. . . is the
Euler constant. We see that the ratio ��kF ,−kF� /��kF ,kF�
approaches unity for D→� as in Galilei-invariant 1D wires,
where in addition one also has R=0. In order to estimate R,
we first observe that in Eq. �23�, the ��k ,−kF� term is sup-
pressed by a factor e−8�d / ��2

as compared to ��k ,kF�. This
factor becomes small in regime �14�, and we can therefore
approximate R�2�0

kFdk�kF
��k ,kF�, which can be calculated

in closed form for density profile �26�,

R � 8���2�c1 + 2c2� + 4��2c1 − 1�ln�D/���

� ��5.73 − 2.60 ln�D/��� . �29�

Employing the incomplete Euler Beta function, we find

c1 =
1

3�4�2 − 	
0

1

dt
�1 + t

t3/4 � � 0.6496 �30�

and

c2 = 	
0

1

dt
t1/4

�1 + t
ln� 1 + t

1 + �t
� � − 0.07171. �31�

Remarkably, R decreases with increasing D /�, changes sign
at D�9.02�, and then continues to decrease logarithmically.
Although asymptotically smaller by a factor 4��2c1−1�
�0.326 than the leading contribution �Eq. �28�� to g4, the R
term is important for quantitative estimates of the TLL pa-
rameter. For example, when R�0, standard expressions
�without R� would overestimate g, pretending too weak in-
teraction effects. The usual expressions are based on Galilei
invariance, which is broken in the present system due to the
periodic superstructure imposed on the 1D wire by the snake
orbits. It is not obvious to us how standard estimates to g4,
starting from the microscopic interaction �Eq. �13��, would
recover the R contribution.

Combining Eqs. �16�–�29�, we get the analytical estimate
for the TLL parameter,

g � �g0 − ln�D/d�
g0 + ln�D/d��1/2

, �32�

in the regime D�d�� �see Eq. �14��, where � is given in
Eq. �27�. Here, we have abbreviated

g0 =
�

2�
+ �2�c1 + 2c2� + 4��2c1 − 1�ln

D

�
+ ln�eC/2D

�
� .

�33�

TLL parameter �32� is depicted in Fig. 5, where 
�k�kF

=vF

and a “fine structure constant” �=1 have been assumed.
However, according to Eq. �33�, changes in � may be com-
pensated for via changes in �, i.e., by modification of kF or
of the magnetic-field parameters.

As shown in the inset of Fig. 5, values of about g�0.3
are expected for the chosen value of B0, with no pronounced
variations when changing D /�. Such weak sensitivity to kF
found in graphene is in stark contrast to semiconducting
wires, where g can vary significantly when changing the car-
rier density.44 As discussed in Sec. I, similar values for g as
compared to the values in Fig. 5 have been reported for other
TLL systems such as quantum wires8 or single-wall nano-
tubes �SWNTs�.9,32,33 On the other hand, the main panel in
Fig. 5 demonstrates that g can be widely tuned in graphene
wires by changing the snake-state separation 2d in Eq. �7�
via the magnetic-field parameters, in particular by sweeping
the background field B0.

V. CONCLUSIONS

In this paper, we have analyzed the effects of electron-
electron interactions on the electronic properties of magnetic
waveguides formed in suitable inhomogeneous magnetic
fields in graphene. When there are two parallel lines along
which the magnetic field vanishes, a pair of counterpropagat-
ing snake states can be formed, which are ideal unidirec-
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FIG. 5. TLL parameter g in Eq. �32� for �=1 and D
=100 /�
B. Main panel: g as a function of B0 /
B for kF=10�
B.
Inset: g vs kF /�
B for B0=1.526
B. Note that the regime ��d
translates into kF�

18
�3


B
2B0

−5/2, which here implies kF /�
B�1.
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tional �chiral� channels similar to the edge states in quantum
Hall bars. We have studied the case of a smooth magnetic-
field profile across the wire, but similar results are expected
also for other profiles, e.g., for piece-wise constant fields.
Employing a combination of analytical methods for the band
structure and for the eigenfunctions �which were checked
against exact diagonalization results� with a thermodynami-
cal approach, we have obtained a closed result for the non-
universal TLL parameter �see Eq. �32� and Fig. 5�. This pa-
rameter then determines the power-law exponents appearing
in many observables of interest, in particular in the energy-
dependence of the tunneling density of states. Quite remark-
ably, we have uncovered that the snake orbits impose a pe-
riodic superstructure that breaks Galilei invariance of the
resulting wire, and modifies the commonly used estimate for
the TLL parameter g. The finite R term in Eq. �29� reflects
this physics. We expect this correction to affect also edge
states in quantum Hall bars. Typical values for g found here
are comparable to the values reported for semiconductor
quantum wires and single-wall carbon nanotubes. We thus
expect that non-Fermi liquid behavior should be sufficiently
pronounced to be observable in systems based on inhomoge-
neous magnetic fields.

There are two main advantages regarding experimental
observability in our system when compared to previous TLL
realizations. First, the TLL parameter g can be tuned over a
significant region by sweeping the strength of the homoge-
neous part of the magnetic profile. This is illustrated in the
main panel of Fig. 5. Second, the unavoidable presence of
disorder is not expected to affect the TLL behavior since
right- and left-moving electrons are spatially separated. This
may allow to experimentally study the physics of an ultra-
clean TLL state.

While there are similarities to the physics of quantum
Hall edge states, the TLL state discussed here is quite differ-
ent from the chiral Luttinger liquid discussed in the context
of the fractional quantum Hall effect.42 The g parameter in
the latter case is fixed by the bulk filling factor, while here it
is nonuniversal and tunable. From a conceptual point of
view, the quantum Hall situation is also more intricate be-
cause of the coupling of edge states to bulk states.42 Such
complications are absent for the TLL state discussed in this
paper. To conclude, we hope that our work motivates experi-
ments in this direction.
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APPENDIX: NUMERICAL DIAGONALIZATION

In this appendix, we provide some details on how the
numerical diagonalization mentioned in Sec. II B has been
implemented. From Eq. �6�, we first observe that exact
eigenfunctions ��x� of Eq. �3� behave as �exp�− x1+	

1+	 � for x
→�. For example, the exact zero-energy state to Eq. �9� is
given as �e−�4/4+b0�2/2+�� ,0�T up to a normalization factor.

However, it is clear that accurate eigenvalues �k
2 only re-

quire to maximize the overlap between the approximated
wave function and ��x�. For convenience, we thus use the
complete and orthonormal oscillator basis

�n��� =
1

�1/4�2nn!
e−�2/2Hn��� ,

where Hn are Hermite polynomials. Matrix elements of the
operator H2 in Eq. �3� in this basis read �b0=B0 /
B�


B
−1��n
H2
�n�� = �2n + 1 + �2��nn� + ��n
�2	 − �1 − b0

2��2

− 2b0�	+1
�n�� − ��n
2k��	 − b0��

− �z�	�	−1 − b0�
�n�� ,

where we use that for integer � and even n+n�+� �� denotes
the Gamma function�

��n
��
�n�� =�2n+n�n ! n�!

�


m=0

�n/2�



m�=0

�n�/2� �−
1

4
�m+m�

�
�� 1+n+n�+�

2 − m − m��
m ! m� ! �n − 2m� ! �n� − 2m��!

,

where ��n
��
�n��=0 otherwise. The symbol �n� denotes the
largest integer smaller or equal to n. Upon carrying out stan-
dard diagonalization for 0 n , n� 30 basis functions, we
obtain the energy dispersion �k in Figs. 1 and 3 for 	=2 and
	=3, respectively. To numerical accuracy, all levels are
found independent of �z= �1, although the effective poten-
tials in Eq. �3� differ considerably. Only the zero-energy
level �k=0 in Fig. 3 �there is no zero-energy level in Fig. 1�
belongs purely to the upper pseudospin component �z= +1
for the valley point K chosen here. With the numerical di-
agonalization, we also obtain the eigenfunctions �k�x� and
�k�x� of the Dirac Hamiltonian �Eq. �2��. In Figs. 2 and 4, we
show the resulting density profiles for 	=2 and 	=3, respec-
tively. All figures nicely confirm the overall picture devel-
oped in Sec. II B.
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